Hydrogen (H2) has shown promise as a fuel that can help reduce greenhouse gases when produced through water splitting using renewable energy. However, the process of breaking water into hydrogen and oxygen is not as straightforward as it may seem. It involves complex chemistry with two simultaneous electrochemical reactions requiring catalysts to facilitate the breaking
Chemistry
Hair care is something that most people are concerned about, especially when it comes to split ends. It is a common hair problem that many individuals face, yet the science behind it remains poorly understood. Despite being accused of “splitting hairs,” a team at Trinity College Dublin, led by Professor David Taylor, has taken on
The discovery of how halogen bonds can be utilized to manipulate sequential dynamics in multifunctional crystals has opened up new possibilities in the realm of crystal engineering. Halogen bonds are unique intermolecular interactions that occur between a halogen atom and another electron-dense entity, playing a critical role in the development of innovative photo-functional materials. This
In a groundbreaking development, a team of researchers led by Professor Han Gi Chae and Professor Jong-Beom Baek at UNIST, in collaboration with Professor Kafer T. Tavuz at KAUST, has introduced a new technology to overcome the limitations of current catalyst electrodes. The innovation, reported in the Journal of the American Chemical Society, involves the
The industrial process for the conversion of methane to methanol has long been known to be extremely energy and resource-intensive. Scientists have been searching for more efficient and sustainable ways to carry out this conversion process, leading to the development of various catalyst systems over the past decade. However, many of these catalysts rely on
The University of Virginia School of Engineering and Applied Science has achieved a significant breakthrough in the field of chemical engineering. Researchers have successfully developed a method to fabricate a miracle material known as MOF-525 for large-scale application. This material has the remarkable ability to extract value from captured carbon dioxide, offering a potential solution
Prof. Bozhi Tian’s lab has made significant strides in bridging the gap between traditional electronics and the human body. Their latest innovation, published in Science, involves the development of “living bioelectronics” – a groundbreaking combination of living cells, gel, and electronics that seamlessly integrate with living tissue. This innovation marks a shift in the field
Have you ever imagined a material that defies common sense by becoming wider and fatter when pulled and thinner when pushed? Such materials are not just a product of imagination, they actually exist and are known as auxetics. These unique materials have properties that make them suitable for a wide range of applications, from bomb-resilient
Recent research conducted by UC Santa Barbara and the University of Pittsburgh has shed light on the potential of using photobiocatalysis to expand the range of chemical reactions available to scientists. In a groundbreaking paper published in the journal Nature, chemistry professor Yang Yang and his team explore a method that utilizes light to produce
Protein structure prediction has been a key area of focus for researchers due to its implications on human health and disease. Computational approaches have long been utilized to predict how proteins fold themselves into structures that determine their functions and interactions with other molecules in the body. These structures play a crucial role in understanding
Proteins, the molecular machines essential for cellular functions, rely on their three-dimensional structures for proper functioning. Recent advancements in protein research have led to the development of a groundbreaking mathematical method, known as LoCoHD (Local Composition Hellinger Distance), by the HUN-REN-ELTE Protein Modeling Research Group. Unlike traditional methods that only consider atom positions, LoCoHD incorporates
The biorefining industry has long struggled with the concept that “You can make anything from lignin, except money.” Despite its abundance and potential, commercializing lignin has proven to be a challenge. However, there may be hope on the horizon with an innovative approach developed by chemists from the Dalian Institute of Chemical Physics (DICP) of