In the realm of condensed matter physics, a compelling phenomenon has captured the attention of researchers: the quantum anomalous Hall effect (QAHE). This effect, characterized by the ability to conduct electrical currents without resistance along one-dimensional edges, presents a promising avenue for low-energy electronics. However, the potential of QAHE is often hindered by the presence
Physics
Nanophotonics, the study of light at the nanoscale, represents a fascinating realm where the interaction of light and matter gives rise to innovative applications that reshape technology. From revolutionizing communication systems to enhancing diagnostic capabilities in medicine, the potential of photonic technologies continues to expand. Recent advancements at Chalmers University of Technology push these boundaries
Recent advances in quantum computing have brought to light both the extraordinary promise and the intricate challenges posed by this emergent technology. A groundbreaking study conducted by teams from the University of Chicago and Argonne National Laboratory has introduced a classical algorithm to simulate Gaussian boson sampling (GBS) experiments, which stands as a significant leap
Recent advancements in theoretical physics have highlighted the complex and often nuanced interactions between energy and information, particularly in quantum field theory. An innovative study published in *Physical Review Letters* on August 30 has unveiled a surprisingly simple relationship that connects the rates of energy and information transmission across interfaces linking two distinct quantum field
The advent of technology has profoundly transformed various fields, and microscopy is no exception. Recent advancements have paved the way for a groundbreaking innovation: a smartphone-based digital holographic microscope. This device enables precise three-dimensional measurements and holds significant promise for educational and clinical applications, particularly in resource-limited settings. The ability to transport this lightweight and
Extreme conditions found within celestial bodies such as stars and planets present some of the most intriguing environments in physics. The vast pressures, often reaching millions of bars, combined with temperatures soaring into the millions of degrees Celsius, forge matter into unique states that challenge our understanding of the fundamental properties of materials. While researchers
The cosmos is a vast tapestry of stars, each with its own heartbreaking beauty and tragic demise. The eternal questions of how stars are born, sustain their brilliance for eons, and ultimately explode or collapse into remnants have captivated humankind for centuries. Among the most profound aspects of this stellar lifecycle is the process of
The realm of materials science is witnessing a groundbreaking shift with the advancement of spintronics—a transformative area aiming to utilize electron spin as a means to convey information. Researchers from Monash University, particularly part of the FLEET Center, have unveiled a pioneering strategy centered on intrinsic magnetic second-order topological insulators (TIs). These materials are not
Recent advancements in the field of spintronics have heralded a new era with the discovery that spin currents can be generated directly through ultrashort laser pulses. This significant finding, revealed by a collaborative effort of an international team of physicists, was highlighted in their publication in the esteemed journal *Physical Review Letters*. The study illustrates
Gravity, one of the most fundamental forces in the universe, has historically been a subject of intrigue and exploration for scientists. Our comprehension of gravity at macroscopic scales—such as the orbits of planets and lunar tides—has reached a sophisticated level, thanks to advancements in both theoretical and experimental physics. Researchers can now accurately model gravitational
In the realm of modern technology, materials serve as the bedrock upon which advancements are built. This is especially true for applications in extreme environments, such as nuclear energy systems and military technologies. For these fields, materials must exhibit exceptional durability and resilience against the forces of temperature, pressure, and environmental corrosives. As the demand
Recent advancements at Delft University of Technology shed light on a pioneering approach to manipulating atomic components, providing insight into the fabric of quantum mechanics. Led by renowned physicist Sander Otte, the research focuses on the peculiar behavior of a titanium atom—specifically the isotope Ti-47, which exhibits a unique magnetic characteristic. This study reveals the