Quantum physicists and engineers have been working tirelessly over the past few decades to develop new and reliable quantum communication systems. These systems have the potential to serve as a testbed for evaluating and advancing communication protocols. Recently, researchers at the University of Chicago introduced a groundbreaking quantum communication testbed with remote superconducting nodes. In
Physics
Quantum information technology heavily relies on the use of single photons as qubits. The accurate determination of the number of photons is crucial for the success of various quantum systems such as quantum computation, quantum communication, and quantum metrology. Photon-number-resolving detectors (PNRDs) play a vital role in achieving this accuracy. These detectors have two main
In a ground-breaking achievement, Cornell quantum researchers have successfully detected a rare and elusive phase of matter known as the Bragg glass phase. This remarkable discovery addresses a long-standing question regarding the existence of this partially ordered state in real materials. The research paper, titled “Bragg glass signatures in PdxErTe3 with X-ray diffraction Temperature Clustering
The existence of charge density waves (CDW) resulting from the condensation of excitons has been a topic of interest for researchers in the field of quantum physics. This phenomenon can lead to a metal-insulator transition, creating a new quantum phase known as an excitonic insulator. Recently, a team of scientists at Shanghai Jiao Tong University
The field of quantum computing has garnered immense attention due to its promise of faster and more efficient computational capabilities compared to classical computing. Unlike classical computers that process information in the form of binary bits (0s and 1s), quantum computers utilize quantum bits, or qubits, which can exist in a superposition of states between
The behavior of free electrons in water has been a topic of discussion in the field of physics for quite some time. When water comes into contact with radiation, free electrons are released from the water molecules as they ionize. However, the flow and behavior of these electrons between water molecules has remained a contentious
Scientists from the U.S. Department of Energy’s Ames National Laboratory and SLAC National Accelerator Laboratory have recently conducted a groundbreaking study on infinite-layer nickelates. This class of unconventional superconductors has captured the attention of researchers due to its unique properties. In their paper titled “Evidence for d-wave superconductivity of infinite-layer nickelates from low-energy electrodynamics,” published
The field of nuclear physics has always been focused on uncovering the secrets of the atomic nucleus. With the advent of new generation radioactive-ion beam facilities, researchers now have the opportunity to conduct previously challenging experiments and push the boundaries of our understanding even further. These facilities enable the discovery of new isotopes and the
The field of programmable photonic integrated circuits (PPICs) continues to make significant strides in processing light waves for computation, sensing, and signaling. Researchers at the Daegu Gyeongbuk Institute of Science and Technology (DGIST) in South Korea, alongside collaborators from the Korea Advanced Institute of Science and Technology (KAIST), have achieved a major breakthrough by incorporating
Semiconductor moiré superlattices have become a subject of great interest in the study of correlated electron states and quantum physics phenomena. Recently, researchers at Massachusetts Institute of Technology (MIT) conducted a study to further explore these material structures and their underlying physics. Published in Physical Review Letters, their paper introduces a new theoretical framework that
Quantum computing has made significant progress in recent years with major players like Google and IBM offering cloud-based quantum computing services. However, there are still limitations that need to be addressed before quantum computers can fully replace standard computers. One of the main challenges is the availability of qubits or quantum bits, which are the
Experimental research conducted by a joint team from Los Alamos National Laboratory and D-Wave Quantum Systems has shed light on the paradoxical role of fluctuations in inducing magnetic ordering on a network of qubits. In their study, the team aimed to understand the behavior of quantum systems by exploiting a dense network of interconnected qubits.