Protein research, diagnostics, and analytics have greatly benefited from the detection, identification, and analysis of macromolecules. Mass spectrometry, a commonly used detection system, has allowed for the separation of charged particles based on mass-to-charge ratio and the measurement of signal intensity generated by a detector. However, traditional detectors have had limitations, particularly in detecting particles
Physics
It’s mesmerizing how a mixture of cornstarch and water can create a substance that behaves like neither a liquid nor a solid. Known as oobleck, this non-Newtonian fluid flows like a liquid when left undisturbed but turns firm when pressure is applied. Non-Newtonian fluids, including Silly Putty, quicksand, paint, and yogurt, have perplexed scientists for
The fusion industry, which holds immense promise as a source of unlimited green energy, is rapidly growing and attracting investments from for-profit companies. However, a new study suggests that universities are not adequately fulfilling their role in supporting the development of this industry. While private industry plays a crucial role in funding research, academia is
In an increasingly data-driven world, the demand for high-capacity data storage and faster computing capabilities is growing. Researchers are constantly seeking new materials that can meet the expectations of consumers. One of the key questions they ask is how to design materials that can store data efficiently, at a lower cost, and with reduced power
Quantum mechanics never ceases to amaze scientists with its peculiar and counterintuitive phenomena. In a recent study conducted by researchers at the University of Warsaw’s Faculty of Physics, the observation of azimuthal backflow in light has brought us one step closer to understanding and harnessing the potential of quantum backflow. This breakthrough has implications for
Scientists conducting quantum research have been granted a groundbreaking tool that promises to accelerate their progress and enhance adaptability. Developed by the Quantum Engineering Technology Labs and the Bristol Robotics Laboratory (BRL) at the University of Bristol, a robotic arm has been constructed with a one-of-a-kind design that enables quantum experiments to be carried out
In 1973, physicist Phil Anderson proposed the existence of the quantum spin liquid (QSL) state on triangular lattices, but due to limited resources, further exploration was hindered. Fast forward to the present, a team of researchers led by the Quantum Science Center (QSC) has successfully confirmed the presence of QSL behavior in KYbSe2, a material
Lead-208 is an intriguing element with a unique neutron-rich nucleus. It consists of 82 protons and 126 neutrons, and one of its distinctive properties is its structure, particularly the presence of a diffuse shell of mainly neutrons known as the neutron “skin.” This article delves into the research conducted on the neutron skin, its implications
When we think of hearing loss, we often associate it with loud machinery and excessively noisy environments. However, a recent study published in Physics of Fluids highlights the lesser-known risk of hearing loss in public environments such as theaters and concert halls. The authors of the study aim to not only make these spaces safer
The CMS experiment at the Large Hadron Collider (LHC) has made a groundbreaking step in the search for new physics. In its first study using data from Run 3, the experiment focuses on the possibility of “dark photon” production in the decay of Higgs bosons. Dark photons, unlike the particles found in the Standard Model,
Spintronics, a promising field of research aiming to revolutionize information and communication technologies, is now one step closer to becoming a reality. Researchers at RIKEN have made significant strides by investigating the dynamics of nanoscale magnetic whirlpools known as skyrmions. With their ability to be controlled by smaller currents or electric fields, skyrmions hold immense
Quantum mechanics governs the behavior of electrons within magnetic materials, with their spins dictating the magnetic properties of the material. Now, a team of researchers from JILA, led by Margaret Murnane and Henry Kapteyn, has made a groundbreaking breakthrough in controlling these spins with exceptional precision. By harnessing the power of extreme ultraviolet high-harmonic generation