The field of quantum computation holds great promise for revolutionizing how we process and store information. One of the key challenges in this field is finding suitable materials that can host and manipulate quantum states. Physicists at RIKEN have recently made an exciting breakthrough by developing an electronic device that hosts unusual states of matter,
0 Comments
On the highway of heat transfer, thermal energy is traditionally moved through quantum particles known as phonons. However, in today’s nanoscale semiconductors, the efficacy of phonons in removing heat has reached its limit. This limitation has led researchers at Purdue University to focus on harnessing the potential of a novel type of quasiparticles called “polaritons”
0 Comments
The field of metal-catalyzed C-H functionalization has long been plagued by the challenge of differentiating between bonds in fluoroarenes. However, the Chirik Group at the Princeton Department of Chemistry has taken a significant step forward by introducing a new method that leverages a cobalt catalyst to functionalize fluoroarenes based on their intrinsic electronic properties. Published
0 Comments
A team of roboticists from Technical University of Munich and Sun Yat-sen University in Germany and China, respectively, have made significant improvements to the agility of quadruped robots. By adding a flexible spine and tail, the researchers have created a more refined robot that demonstrates enhanced mobility. The study was recently published in the journal
0 Comments
Throughout adulthood, there has been a prevailing notion that the thymus gland is no longer essential. However, a recent retrospective study challenges this belief and suggests that the thymus gland may play a crucial role in our overall health. The study conducted by US researchers revealed that individuals who had their thymus removed face an
0 Comments
In 1960, Joaquin Luttinger presented a groundbreaking statement that established a relationship between the behavior of a system’s low-energy excitations and the total number of particles it can accommodate. This theorem held true not only in systems of independent particles but also in correlated quantum matter with strong interactions between the particles. However, recent research
0 Comments
In the field of surgical applications, traditional medical adhesives have often posed significant challenges due to their limited bio-absorbability, high toxicity, and lack of customizability. These limitations have resulted in suboptimal surgical outcomes. However, recent advancements in synthetic biology offer a promising alternative. Researchers, led by Fuzhong Zhang, professor of energy, environmental & chemical engineering
0 Comments