admin

Quantum information technology heavily relies on the use of single photons as qubits. The accurate determination of the number of photons is crucial for the success of various quantum systems such as quantum computation, quantum communication, and quantum metrology. Photon-number-resolving detectors (PNRDs) play a vital role in achieving this accuracy. These detectors have two main
0 Comments
In a groundbreaking development, researchers from the University of Cambridge have created a sensor, using a unique and innovative material called “frozen smoke,” that has the ability to detect formaldehyde in real time at extremely low concentrations. The sensor has demonstrated a sensitivity far beyond that of conventional indoor air quality sensors, and its potential
0 Comments
In a ground-breaking achievement, Cornell quantum researchers have successfully detected a rare and elusive phase of matter known as the Bragg glass phase. This remarkable discovery addresses a long-standing question regarding the existence of this partially ordered state in real materials. The research paper, titled “Bragg glass signatures in PdxErTe3 with X-ray diffraction Temperature Clustering
0 Comments
In a groundbreaking discovery, scientists at RIKEN have successfully isolated a mysterious structure involving two water molecules that had been predicted but never observed. This significant breakthrough could have far-reaching implications for various fields such as astrochemistry and the study of metal corrosion. The research paper detailing this finding is published in The Journal of
0 Comments
Photocatalysts that are highly reducing or oxidizing are a major challenge in the field of photochemistry. Up until now, only a small number of transition metal complexes, specifically those with Earth-abundant metal ions like chromium, iron, and cobalt, have been successful in becoming excited state oxidants. However, these photocatalysts require high energy light for excitation
0 Comments
The field of quantum computing has garnered immense attention due to its promise of faster and more efficient computational capabilities compared to classical computing. Unlike classical computers that process information in the form of binary bits (0s and 1s), quantum computers utilize quantum bits, or qubits, which can exist in a superposition of states between
0 Comments
The University of Cincinnati’s team of engineers, led by Associate Professor Jingjie Wu, has made significant strides in the conversion of carbon dioxide into valuable products. This breakthrough not only addresses climate change but also offers a more efficient method for producing ethylene, a crucial component in the creation of various products, including plastics. With
0 Comments
OpenAI’s CEO, Sam Altman, is on a mission to revolutionize the global semiconductor industry. According to the Wall Street Journal, Altman has been engaging in discussions with potential investors, including the UAE government. His goal is to address critical challenges faced by the rapidly expanding artificial intelligence (AI) sector, such as the scarcity of expensive
0 Comments